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Determination of the Steady State
of an Oscillator by a Combined
Time—-Frequency Method

Martin H. Schwab

Abstract —This paper presents a new method for the computa-
tion of the steady state of nonlinear oscillators including dis-
tributed elements which exploits advantages of both time-
domain and frequency-domain simulation. The oscillator net-
work is divided into a linear subnetwork described by a hybrid
matrix in the frequency domain and a nonlinear subnetwork
represented by a set of first-order nonlinear differential equa-
tions solved in the time-domain. The periodic steady state of the
oscillator is shown to be equivalent to the solution of a boundary
value problem, where the boundary conditions are given at a set
of paints along the time axis. For the solution of the boundary
value problem the multiple shooting algorithm is applied, which
may be modified in a very effective way owing to the special
structure of the boundary value problem. It will be shown that
the bandwidth in the nonlinear subnetwork can be chosen
arbitrarily high regardless of the number of harmonics at the
ports connecting the subnetworks. An error estimate for the
neglected harmonics at the ports is derived, which does not
require additional numerical effort. In order to demonstrate the
feasibility of the method and to discuss the error mechanisms it
is applied to two examples: a Clapp oscillator including a
piecewise-linear characteristic and an integrated GaAs MES-
FET oscillator at 10.7 GHz.

I. INTRODUCTION

ONOLITHIC integration of microwave circuits
N makes the accurate prediction of the behavior of
oscillators an increasingly important task in modern CAD
techniques. From a linear simulation such important
characteristics of oscillators as frequency and output
power can only be estimated, because certain dominant
effects, such as the operating point shift and limitation
mechanisms, are neglected. The use of traditional time-
domain techniques as implemented, for example, in
SPICE is the most general, but also the least advanta-
geous, way to compute the steady state of an oscillator [1],
[2]. Here no assumption on the periodicity of the solution
is made and a quasi-periodic or chaotic solution may be
simulated as well as a periodic one. Owing to the flexibil-
ity of modern integration algorithms the time-domain
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simulation may be done very effectively [1]. Nevertheless
this simple method requires a high computational effort
because of the unfavorable description of distributed ele-
ments and the stiffness of the oscillator network, i.e., the
large difference between the time constants inherent in a
typical oscillator circuit.

These problems can be avoided if a periodic solution is
assumed, as is done in numerous algorithms. An excellent
overview of the literature can be found in [4]. The most
popular method is the harmonic balance algorithm, where
the currents and voltages are described by Fourier series
with a finite number of elements. Then the inner states of
distributed elements can be eliminated and the differen-
tial equation describing the oscillator network is trans-
formed into a complex algebraic equation, which is solved
by using an algorithm of the Newton—Raphson type or by’
minimizing an objective function. Problems may arise with
the harmonic balance method if the oscillator includes
strong nonlinearities generating a large number of har-
monics which have to be taken into consideration to
achieve the required accuracy.

Another algorithm which underlies the presented algo-
rithm is the shooting method [2], [3]. Here the state vector
describing the oscillator network is varied until after one
period of oscillation the state is the same. In the case of
high-Q circuits this algorithm runs into severe conver-
gence problems. Additionally the method still requires a
discrete approximation of distributed elements and so is
very impracticable in microwave circuits.

In this paper a new algorithm is presented which com-
bines the advantages of both time-domain simulation and
frequency-domain simulation. In Section II the network
representation is described, which is based in a division of
the network into a linear and a nonlinear subnetwork.
The linear network part is represented by a hybrid matrix
and can be computed with the methods of traditional
linear network analysis. In Section III it is shown that the
steady state of the oscillator network is equivalent to the
solution of a nonlinear boundary value problem where the
differential equation is given by the nonautonomous set
of first-order differential equations and the boundary
conditions are given at a set of sampling points and
couple the two network subsets. The multiple shooting
algorithm [5], [6], which shows a much wider basis of
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Fig. 2. Separation of the linear and nonlinear network parts.

convergence than the single shooting one, is applied to
this boundary value problem in Section IV. Since the
boundary conditions are no longer given at two points, as
in the original multiple shooting algorithm, it must be
modified appropriately. The special structure of the dif-
ferential equations and boundary conditions is exploited
to accelerate the numerical calculations. To demonstrate
the practical use of the algorithm as a whole and to
discuss its error mechanismes, it is applied to two examples
in Section V. The first, a simple oscillator network, shows
the advantages of the method in the analysis of strong
nonlinearities. In a second example the steady state of an
oscillator at a frequency of 10.7 GHz is computed.

II. NETWORK REPRESENTATION

The description of the network is based on a division
into two subsets as shown in Fig. 1. A nonlinear subnet-
work contains all nonlinearities of the oscillator network
and some linear elements embedding the nonlinearities.
These linear embedding elements show in many cases a
low-pass structure owing to parasitic elements such as
bond wire inductance, package capacitance, and loss re-
sistances, They may be used to reduce the numerical
effort drastically, as demonstrated later. In the other
subnetwork all linear network elements which are appro-
priately described in the frequency domain are collected,
such as distributed elements. The two network parts of
the oscillator are connected by m ports. In a subsequent
step the linear and the nonlinear part of the network are
separated from cach other as shown in Fig. 2. At each
port, either the voltage or the current is réplaced by an

equivalent source. These sources are collected in the
vector 1.

First we will present a description of the nonlinear
subnetwork. Based on the methods of state analysis this
subnetwork is described by a set of nonlinear first-order
differential equations:

%x =A(z)x+ B(z)w(z) + C(2)w(z)+ D(2)l,

xeR" IeR” (1)
where x is the vector of the state variables and z is the
vector of the variables controlling the nonlinearities. Non-
linear resistors and nonlinear conductances have been
replaced by controlled voltage and current sources and
are assembled together with all other sources by the
vector w=[v,,i,]?. Since we have so far imposed no
restriction on the network allowing, for example, nonlin-
ear capacitors and inductors, the vector w and the matri-
ces A, B, C, and D given by the elements and the
topology of the nonlinear network depend on z, which
controls the nonlinearities. A simple example will demon-
strate this: the current through a diode may be estimated
by ip=(1—e“/¥r), where u is the voltage on the diode.
In this case the controlling quantity is given by z =u.
Equation (1), which is implicit in general since z depends
on x and x, will degenerate to an explicit set of differen-
tial equations if two restrictions are imposed: First, we
exclude cases where the controlling z is a function of x
and ¥ and assume that the nonlinearities are controlled
by the state variables only. Second, we assume that no
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loop exists including a controlled voltage source and that
the loops contain only capacitors and voltage sources. By
analogy we exclude the dual case, where a controlied
current source is connected to a node which is connected
only to current sources and inductors.

With these restrictions, the matrix C degenerates to 0
and then we obtain from (1)

%x =A(x)x+ B(x)w(x)+ D(x)l.

(2)
Now the set of equations is in a form to be integrated
with a standard algorithm. The state vector gives a
single-valued representation of the nonlinear network.
Therefore all network currents and network voltages can
be derived from x. The vector ¢ containing the dual
variables to the port source vector [ is given by

¢=Fx+Gw+ HI. 3)
The matrices F, G, and H are derived in a way similar to
that for the matrices 4, B, C, and D from topology and
elements of the network. Equations (2) and (3) provide a
complete description of the nonlinear subnetwork. A
computer algorithm for generating these equations can be
found in [1].

At the linear subnetwork the port variables [ and ¢’ are

connected by their Fourier transforms in the frequency
domain:
V(w)eCm>m 4
where V(w) is the hybrid matrix of the linear subnetwork.
It is assumed that V(w) is given by standard network
analysis or by a field-theory-based computation.

Now a favorable aspect of the network separation be-
comes apparent. In a pure time-domain formulation,
high-Q circuits have slow time constants, leading to long
transients and small variations of the state variables after
one period of oscillation. This requires excessive numeri-
cal effort in integration and causes a nearly singular
Jacobian in a shooting method. This will entail excessive
numerical effort if the steady state is obtained by integra-
tion, and requires extremely high integrator precision if a
shooting method is used. If the feedback structure is
interrupted by the network separation, the slow time
constants of the resonator will have no influence on the
time-domain integration in the nonlinear subnetwork,
while a frequency-domain approach for the linear subnet-
work involves the most appropriate basis function for
high-Q circuits.

V(w)L(w)=C(w),

IT1. THE STEADY STATE AS THE SOLUTION TO A
BOUNDARY VALUE PROBLEM

In this section we deduce a boundary value problem
whose solution is equal to the steady state of the oscilla-
tor. The best way to do this is to start from an oscillator
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network described completely in the time domain. In our
method this is equivalent to the case where the nonlinear
subnetwork contains the whole oscillator network and the
number of ports is zero. Then we obtain from (2)

%x= A(x)x + B(x)w(x).

(5)
This set of differential equations is autonomous and rep-
resents the entire oscillator network. In the periodic state
of an oscillator the state of the system must obviously
repeat itself after each period of oscillation. Since the
state of the system is uniquely defined by the state vector
it is necessary and sufficient that

x(£) = x(t +Ty) (6)

be fulfilled, where T, is the period of oscillation and ¢ an
arbitrary initial time. Equations (5) and (6) define a
two-point boundary value problem which is unsolvable for
two reasons: first of all we do not know T, a priori, and
second we see that for any solution x(#,) there exists an
infinity of solutions x (¢, + s), s € R. By a simple transfor-
mation this boundary value problem may be transformed
into a solvable one. Therefore the time interval t €[t
+ T,] is transformed to 7 €[0,1] introducing T, as a new
“synthetic” state variable T, via

d
X [A(x)x+ B(x)w(x)]T,

dT, 0 t
dr T T,

(7
Notice, that we have now n + 1 differential equations and

therefore need one additional boundary condition, which
is given by, for example,

d
d—txv(7=0)=0 or x,(r=0)=0. (8)

This boundary condition should fix the phase of the limit
cycle but must be applied cautiously as to ensure that x,
has no local maxima or minima lying close together in the
first case or not too large a dc offset in the second case.

We have derived now a boundary value problem whose
solution is the steady state of a lumped oscillator network
for the special case of the network description in the
previous section. Treating the general case according to
the network representation in the section above, the
condition x(r=0)= x(r =1) is necessary, but no longer
sufficient. In addition to this condition the port voltages
and currents of ¢(7) and ¢’(7) must coincide. By analogy
to the pure time-domain method shown above, we trans-
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form (2) and obtain

4 _,,

x Ax + Bw + DI)T
——=(A4x+ Bw )T, dr

t
= =—. (9
dr T T, (%)

Since we assumed a periodic oscillation, the vector 1(7)
may be described by the Fourier series

+ oo
I(r)=Y (L,+ijL,)e”™ . (10)
From (4) we obtain
+ o0 )
c(r)= Y V,(L,+jL,)e*" (11)

where V, is the hybrid matrix of the linear multiport at
the vth harmonic of the frequency f,=1/T,. Now the
interaction between the subnetworks is limited to fre-
quencies below (k +1)f,. The Fourier series are trun-
cated above their kth elements. Note that this does not
impose a bandwidth restriction within the nonlinear sub-
network which is determined by the step size of the
integrator. Then we obtain a set of n+Qk + 1)m differ-
ential equations:

d
—x=[A(x)x+ B(x)w(x)+ D(7)I(7)]T,

dr
—T,=0

dr °

d

ELZO (12)

where we added the Fourier coefficients L =[L, L],
Ly, -, L] as state variables. To fix the phase of the
limit cycle we set the first element of L) to zero and omit
it in the vector L. Contrary to (8), this condition implies
no loss of generality. For the n+Qk +1)m differential
equations given in (12) the same number of boundary
conditions is needed. The first n conditions result from
the condition of periodicity for the state variables:

x(r=0)=x(r=1). (13)
To obtain the resting (2k + 1)m conditions the following
considerations are made: we have assumed periodic and
bandwidth-limited port voltages and currents I(¢) and
¢'(¢). Now we assume, that ¢(¢) is limited to k¥ harmonics,
too. Then it is necessary and sufficient for ¢’(¢) and ¢(z)
to coincide at 2k + 1 sampling points. This leads to 2k +
1m conditions:

v—1

TVZE'm, v=1,2,---,2k+1.

(14)

e(r,) =€ () =0,
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With (12) as differential equation and (13) and (14) as
boundary conditions, we now have derived an n+Qk +
1)m-dimensional nonlinear boundary value problem. No-
tice that the boundary conditions are no longer given only
at =0 and 7 =1, as in the pure time-domain boundary
value problem from (6), (7), and (8), but rather at 2k +2
points with 7= —-1)/Qk+1), v=1,---,2k +2. This
makes the standard boundary value problem solver inap-
plicable.

IV. NUMERICAL SOLUTION OF BOUNDARY VALUE
ProBLEM

A. The Nonlinear Vector Valued Shooting Function

Having shown that the solution of the boundary value
problem given by (12), (13), and (14) is equal to the steady
state of the oscillator, we apply and modify the multiple
shooting algorithm [5], [6]. Multiple shooting has a wider
region of convergence; i.e., the method works with a
worse initial guess than single shooting [6]. From now on
the extended state vector, containing x, 7, and L, is
denoted as y =[x,T,, L), y € R**@¥* U From (13) and
(14) we define a nonlinear boundary function

R(y(7-=0), y(T: 2k1+1)""’ y(7=1))

i x(1) — x(0)
¢'(0) — ¢(0)
c,(2k1+1 '_c(2k1+1
) cl(2k2+1)fc(2k2+1) )
_c,(zlczil)_c(zkzg)J

Our task will be to find a trajectory of y fulfilling R = 0.
We divide the interval [0,1] into 2k + 1 equal sections as
done previously in (14) and choose at each of these
sections a starting point of y: y(r =« /2k +1)=:5_ as
shown in Fig. 3. The solution of the initial value problem
at 7 =(x +1)/Qk + 1) with differential equation (12) and
starting value s, will be denoted as

k+1
N2k +1

J = et (16)

We have to find now a set of starting vectors s;,s,," " -,
Syr4) SO that the discontinuities from e, (s ) to s, .,
vanish (see Fig. 3) as well as the boundary function R:

(17)

R(sl’sz,' : '7szk+1:ezk+2(szk+1)) =0.
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Fig. 3. The subdivision of the limit cycle into 2k + 1 sections portrayed
as a two-dimensional projection into the plane x,, x, from state space.

Notice that in (17) we have not defined a starting vector
at 7=1. The value at this point is given by the result of
the initial value problem e, , (s, ). Finding a set of
starting points with the required properties is equal to
find the zeros of the vector valued function

e)(s))— s,
es(sy) —‘s3

U(s) = (18)

€ 2(Sap1) — sl/

¢'(0) = ¢(0)

Lt 1
c(2k+1) ¢

,(2 (2
¢ 2k+1)_c(2k+1)r

1
2k +1

2k 2%
¢ 2k+1)_c(2k+1)

L -

with s=1[s,,5,,"*,8,..,]". The special structure of the
set of differential equations (12) enables us to simplify the
vector valued function. With the introduction of the 2k
+1)m synthetic state variables we added trivial differen-
tial equations to the original system in (12). The solution
of these trivial differential equations is isolated from the
state vector and is easily seen to be constant in- one
subinterval [« 7Qk + 1),(x +1) /(2k +1)]. Since we desire
a trajectory that is continuous at the boundaries of two
subintervals, these additional state variables must be con-
stant in the whole time interval r €[0,1]. Therefore it is

sufficient for them to be defined once. This leads to the
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simplified function
€5 (s7) — 53 ]
e5(s3) 83
R G
U*(z)= _ . 19
@ ¢(0) - <0 @
[ L)
c(2k+1)—c(2k+1
| o2 2
“Nok+1 _c(2k+1
2k 2k
“\2k+1 _c(2k+1)
with s* =[s¥,s%, - -, 53, ,]%, where s* denotes the start-

ing point s* = x(7 =k /(2k +1)). This quantity e* de-
scribes the first n variables of y containing the state
variables and z is defined by z =[s*,T,, L]. ,
Since we will need the Jacobian dU* /dz when trying to
find the zeros of U*, as demonstrated next, we will first
discuss its special structure -and show how it can be
efficiently computed. In general, most of the CPU time
required by a root-finding algorithm is spent in the evalu-

-ation of the Jacobian, which is not given explicitly in most

cases and has to be estimated via numerical differentia-
tion demanding many function evaluations. Because of
the special structure of U* we can reduce the numerical
effort significantly. Regarding the first row of U* we
notice that it depends only on s¥, s%, T,,-and L. Simi-
larly, the second row depends only on s%, s%, T, and L.
Note that the partial derivative of the vector ¢'(«)— ¢(«k)
with regard to s* is nonzero only for k =v. We obtain, .
for the whole Jacaobian,

[ o1 ~1 o]
63 =T N

i

)ch -1 ¢2k
k

¢§k+1 ,¢2k+1

k

2 ) I SO

#1 5

x k
L Cor+1 Por+1 |

(20)
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with the matrices
L (st)
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¢;< - as* s d)f < RnXn
a * E * E3
¢f=[ e,<+1(S,<) ’3e,<+1(s,<) ’ d)k e R mk+1)
T, L <
,( k—1 k—1
e 2k+1) c(2k+1)
ef = Py , ‘P,f = Rm(2k+1)><n
s ’( k—1 ) ( k-1 s k—1 o k—1
c —¢ ! -
. 2k +1 2k+1) c(2k+1) c(2k+1)
o = — , T , ‘P;I: e Rn><m(2k+l)‘ (21)
0

In (20) only the matrices ¢*, ¢* and the first column of
@ must be computed via numerical differentiation. The
matrices ¢7 and ¢* can be calculated directly by differen-
tiating (15) with respect to y:

) k—1
c(2k+1)
as;

k—1
)_c(2k+1)

JdL

k—1

alc’
[ (2k+1

ow
=—|F+G—

as}
k—1

a !
[c(2k+1

+k 1

al: Z VV(L:+jLzV)eJZﬂ-V(K~(1/2)k+1)
v=—k

dL

+k ]
a,: Z (Lr +jLi)6127rV(K+(l/2)k+1)
v v
v=—k

-H (22)

dL
The sparse matrix structure of the Jacobian allows effi-
cient memory management and the use of sparse matrix
techniques.

At this point the problems arising in a simple time-
domain analysis of a very weakly damped system become
apparent. The system is represented according to the
network description in (2) and (3) by a 0-port: m = 0. The
matrices &%, ¢F, and ¢* vanish. For the weakly damped
system ¢y comes close to the identity matrix ¢X =~ I and
J is ill-conditioned or singular. The root-finding algorithm
described in the next subsection, however, assumes a
nonsingular Jacobian.

B. The Modified Newton— Raphson Algorithm

To find the zeros of U*(z) we apply the modified
Newton—Raphson algorithm. Since this is a well-known
standard algorithm, the discussion here will focus on
certain details of norming and step size control.

With the Newton—Raphson algorithm the nonlinear
function first is linearized, with terms of higher order
neglected. From this linearized function the zeros can be
found by

U*(z)+ JAz=0. (23)
Solving the linear problem
JAz=-U*(z) (24)

leads to Az. The Newton-Raphson algorithm is an itera-
tive process where at every iteration step the estimation
of z is corrected via
20D =204 AZ0 (25)

where we denote z*? as the value of z at the ith iteration
step. If the first estimation of z©® is too far from the
solution the algorithm will not converge to the solution.
In order to enlarge the basin of convergence we introduce
a relaxation factor A®) and obtain

20D = 20 4 YDA O 0<xP<«1 (26)
which is called the damped Newton algorithm. The litera-
ture presents a number of methods for the choice of A,
To avoid numerical problems with an ill-conditioned Ja-
cobian we introduce a weighting matrix W for the ith
iteration step:

W = diag [wf”),wg‘(”,' .. ,wicl(clll’wi(l),wlz(l)" . ':Wé(llc)+1]
(27)
with
W ® — dia 1 2151] w2 =) 21
; g[z(zkﬂ) P R J (28)

w;(z) = wic(z)

x(1)

— o X(0)
Woiri1= Wi

1

= |

w!® = diag [

I [y ey

wlz(l) = wll(t)

I(2) i)
War+1= Wy

(29)
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where wi®,--- wi{), averages the state variables and
w'® the Fourier coefficients.
We weight (20) and obtain from (24)

J=Jw
JZ=—U*(2). (30)
This transformation improves the condition number of
the linear equation system and avoids numerical sensitiv-
ity when, for example, one state variable is in the range of

10 V and another in the range of 1 uA.
The relaxation factor A2 is chosen according to [7]:

E=W1z

1 ifu®>07

o a0 <07 (31
with
(@) — __JA_Z_([)”_Z___ (32)
A2D — A5D|l,
| where A#' comes from a “simplified Newton step™:
JEDAGD = —UO(z) (33)

lI-ll, denoting the Euclidean norm of a vector. ‘
Two level functions T{" and T{” evaluate the success
of an iteration step. T{" judges the relative error of U®:

) (34

The level function T§" is given by the Euclidean norm of
the correction Az¥:

TP = |AZD)3. (35)

An iteration step will be accepted if at least one of these
level functions has decreased. Otherwise the step has
failed; the step size A® is decreased. The algorithm is
terminated if both T{¥ and T§" are less than a chosen
error e:

€ > max (T{0, T{).

(36)

V. ExAMPLES AND ERROR MECHANISMS

In order to show the feasibility of the method two -
examples were .chosen, the first representing a simple

Clapp oscillator model including a piecewise-linear char-
acteristic. It illustrates the formalism of network descrip-
tion and shows the advantage of the algorithm when
analyzing oscillators with strong nonlinearities. With this
simple example the error mechanisms are discussed. In a
second example the algorithm is applied to a hybrid
integrated GaAs oscillator with a MESFET as the active
element in order to demonstrate the feasibility of the
method to real microwave oscillators.

A. Clapp Oscillator

The equivalent circuit diagram of the first oscillator
example is depicted in Fig. 4, including two nonlinearities:
a nonlinear input resistance, i ((¢) = f,(v,), and a nonlin-
ear controlled current source, i (t) = f,(v,). As shown in
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Az =05V - B1 = 55 -mS

Fig. 4. Linear and nonlinear parts of the oscillator network.

Fig. 4 the network is divided into a linear and a nonlinear
subnetwork and the port current is replaced by the cur-
rent soutce (see Fig. 5). The nonlinear subnetwork is
represented by the equations )

[ -1 0 1 " ]
CeRe CERE
Dce 7 0 —Ra—Rlb 1
Oca CaRaRl CaRa
Dcte B 1 O _1 O
Derg Ci.R, Ci.R,
0 1 0 -1
L CtaRa thRa |
Uce
Uca
.Ucte
Ucta
r ~_1 0 3 r O N
e 0
- ey | 2
+ o S+l [i] (37
C q
0 ()e !
0 -0 | Cua |
UCE
Uca ‘
o=[0 0 1 =11, | (38)
U

cta
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Fig. 5. Nonlinear subnetwork; the linear subnetwork is replaced with a
current source.

TABLE 1
STARTING VALUES FOR THE ITERATION PROCESS

Ly=0
Li=1-10"%2+0
L,=0+j0
Ly=0+j0
Ly=0+0
Ls=0+j0
Ty=1-107°

A0 =0.01 -
k=5

The nonlinearities are chosen as

UE
i(v,) =A1(exp——1) (39)
AZ
Bl
-— ifu,<-B,
BZ
i,(v,) =1 B, if— B, <vp<B,. (40)
B, .
E itv,>B,

Since we have only inserted a current source at the port,
the hybrid matrix V degenerates to a simple impedance
Z, which is obviously not defined at w = 0. Therefore we
introduce v, instead of i, as a state variable and avoid
the problem of the product of the terms Z(w — 0)— 0
and I(w — 0) > when matching ¢'(¢) and ¢(¢). The
starting values and parameters for computation were cho-
sen according to Table 1. As an integrator for the solution
of the initial-value problems, the Gear algorithm  was
applied [8]. The solution was obtained after eight itera-
tion steps. On a Micro Vax 2000 the required CPU time
was about 200 s. Fig. 6 depicts the course of the level
function 7, during the iteration process and shows a
decay of about two orders of magnitude per iteration step
near the solution, which is typical for the Newton algo-
rithm.

This simple example shows a great advantage of the
presented method, one which results from the flexibility
of modern integration algorithms. In an integration algo-
rithm such as Gear’s, the evolution of the state variables
over time is discretized and a polynomial is used to
extrapolate to the next discretization point. The order of
the polynom and the step size between the discretization

points may be controlled using error estimates. The time -
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Fig. 6. Level function T; during the iteration process.
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Fig. 7. Time plots of i (r), i (), v ,(7), and v,,(7).

plot of i, in Fig. 7 which was generated using three

harmonics at the port shows that the bandwidth within
the nonlinear subnetwork is truly independent of the
bandwidth limitation at the port. With harmonic balance
algorithms the time plots are interpolated by Fourier
series. The order of these series must be chosen a priori
and determines the step size between discretization points
in time; i.e., all variables in the nonlinear subnetwork
underlie the same bandwidth limitation as the port vari-
ables. It can easily be seen from i , and v, in Fig. 7 that
this is very inefficient in some cases. In our method the
step size of the integration algorithm is independent of
the number of harmonics allowed at the ports. This
means that processes within the nonlinear subnetwork, in
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TABLE 11
RESULTS OF SIMULATION FOR VARIOUS k
k 1 2 3 4 5 6 7

€RrmMS 6.093102 2.3291072 1.5271072 2.8511073 27951073 8.9701074 1.0431074

fIMHz} 1.011184 1.011283 1.011284 1.011275 1.011275 1.011276 1.011270

|Lyol[V]  —1224 —11.43 —11.09 —11.04 —11.04 —11.03 -11.04

|L; llmA] 3385 30.89 29.83 29.68 29.67 29.67 29.67

|L,llmAl — 1.30710 2 9.05510~3 9.0081073 8.9151073 8.893107° 8.9151073

Ly 3llmA] — — 31691073 2.172107°  2174107° 2172107 21741077

|L1 4l[mA] — — — 9.41410~* 9.38110~* 8.94310~4 9.14910~*

|Ly sl[mA] — —_— — — 10311074 6.248103 5415107

|Ly ¢/[mA] — — — — — 9.8221073 7.4151073

L, 5llmA] — — — — — — 1.0711073
which higher harmonics affect lower harmonic contribu- 100 tp(r)[mA] for k =4 s ua(7)[V] for k =4
tions, can be calculated more accurately at the same
number of port harmonics. Furthermore, regarding the 60 T iy
evolution of the state variables over time, an unwanted 20 —9 /
oscillatory behavior of the active device itself may easily
be detected while harmonic balance algorithms would -2 -1
give bad convergence as the only hint. This simple exam- —60 - ~13
ple shows the applicability of the algorithm to oscillators 10 "
with strongly nonlinear behavior. We are now to discuss 00 04 08 12 16 20 00 04 08 12 16 20
the error mechanisms of the algorithm, which may be =
divided into three main effects.

The first results from errors in the solutl(?n of the d(r)[V] for k=1 d(r)mV] for k = 4

boundary value problem, especially of the solution of the 0.5 25
zeros of (19). This error can be easily estimated by (36). 0.3 15
The second error is caused by the subdivision of the [\
entire oscillator network into two subnetworks. With the 01 5 :
replacement of the linear subnetwork by current sources o _5
or voltage sources including k harmonics, the nonlinear .
subnetwork is terminated for harmonics of an order 3 -5
greater k with a short circuit when a voltage source was ~ -05 -25
inserted and with an open circuit for the insertion of a 00 04 08 12 16 20 00 04 08 12 16 20

current source. At this point another aspect of the re-
placement of the linear subnetwork with sources becomes
apparent. An accurate result will be achieved if the kind
of source is chosen with respect to the behavior of the
linear subnetwork for @ — . A parallel resonant circuit,
for example, which leads to a short circuit for @ —
should be replaced with a voltage source.

The third kind of error we will now discuss is caused by
the truncation of the Fourier series and the violation of
the sampling theorem. Recall the derivation of the
boundary value problem. In a first step we replaced the
linear m-port by m sources described by I(r). The as-
sumption that I(7) is limited in bandwidth and may be
described by Fourier series with a finite number of &
harmonics leads to a truncation error. In a second step we
assumed that the port voltages and currents ¢(7) dual to
I(r) are limited in bandwidth to k& harmonics too. Then it
is sufficient for ¢(#) and ¢'(r) to coincide at 2k +1
sampling points owing to the sampling theorem. In reality
this assumption is not justified since harmonics with a
higher order than k may arise in the nonlinear subnet-
work. This leads to a violation of the sampling theorem.

A great advantage of the presented algorithm is that
the error above may be estimated in a very simple way. To

Fig. 8. Time plots of i (r) and u,(7) for k =4 and of d(r) for k=1
and k = 4. The vertical lmes denote the sampling points for the compar-
ison of ¢(r) and ¢'(7).

that end we compare the port voltages and currents ¢(r)
and ¢/(7) and define the difference d(7) as

d(7)=c(7)—c(7). (41)

The solution of the boundary value problem implies that
d(7) becomes zero at the sampling points. The existence
of harmonics of higher order than k and the violation of
the sampling theorem induces a d(7) unequal to zero off
the sampling points. A simple criterion for error is the
root mean square egyg Of d(r) normalized to ¢(r) and
¢'(7) by
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The quantity eg, may be used to control the error
discussed above. The order of the Fourier series is in-
creased until ey is less than a specified tolerance. To
illustrate the mechanisms discussed, the example was
computed with k=1,2,---,7. Table II compiles the re-
sults. We see that port voltages and currents are almost
completely determined by the harmonics of order 0 and 1.
Therefore egys decreases slowly for k£ > 1. This can be
seen in Fig. 8 as well, where the time plots of d(r) and
the sampling points are shown for k=1 and k =4. We
see that d(r) becomes 0 at the sampling points.

B. Hybrid GaAs Oscillator

In a second example the algorithm is applied to a
hybrid GaAs oscillator at a frequency of 10.7 GHz. The
block circuit diagram is depicted in Fig. 9. For the active
element, a GaAs MESFET, a model according to [9] and
[10], was chosen. The parameters were extracted by
matching the model to S-parameter and dc measure-
ments. The network separation and the MESFET model
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with
vy= Ugs(1+ﬂ(vds—vds0))' (4{9)

As integrator the Gear algorithm was used. The solution
for the operating point V,s0=—-05 V and V,,,=3.0 V
with eight significant numbers was obtained after eight
iteration steps. The results for this operation point com-
pared with measurements are represented in Table III.
The output power was measured with a Hewlett Packard
HP8569a spectrum analyzer. The steady state of the oscil-
lator was computed as a function of the dc operating
point, ie., of V,, (see Fig. 11). The solution for one
operating point was used here as a starting value for the
neighboring operating point, so the algorithm was always
near the solution. Since we made only small parameter
steps, the algorithm converged within a few iteration
steps. Note that for V,,=1.05 in simulation and for
V=135 V in measurement, the oscillation vanishes,
For the presented algorithm this means that the vector
valued function (19) possesses no zeros except the trivial
one, which is the stable dc operating point given by

‘; . . . N o, d
are shown in Fig. 10. The transistor nonlinearities are L, =0 L=0 (50)
giver by dr
igs=(Ag+ A, + Aw?+ Az )tanh (yu,) (43)
1 .
Cys0 T if v, < Fup
1- Ug
Cos= B (44)
U - FUB
C,ol1+ e if v,,, > Fv ,
# 2(vp — FugyT-F, wEres
: f F
C if v, ,4<Fu
gdo L chd gd B
v
ng = 8 (45)
Ucgd — FcUB .
C,u0l1+ £ if v,,,> Fp
“N 2(vp— Fog/T-F, gaz s
Ugs .
Is(exp ( — = 1) + Gl if v, > Sn,
nog
fge=1{ — It Gpinl if — vy, +500; <v,, <Snup (46)
Ugs + Ubr .
—Ilexp| — ———— = 1|+ Gyl 1If Vg < — 1y, +500,
Ur
Uds .
Llexp| — ~ 1|+ Gpinlus if vy, = Sny,
Ry (47)
igo=13 — I+ Gl if — v, +500, <vy, <Snvp (48)
Ugs T Upyr ,
—Ilexp| — ——— = 1|+ Gy if vg < — vy, +500,
Ur
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TABLE III
Ourtput Power aND FrREQUENCY, WITH P, DENOTING THE POWER
OF THE kth HARMONIC

Measured Simulated
f 10.689 GHz 10.433 GHz
P, 5.800 dBm 6.45 dBm
p, —2.5 dBm —2.143 dBm

- simulated ¢ measured

Output Power [dBm]:

10;

Pt 5—L

-10T

=157

—20 t + + + + : t
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Viso —

Fig. 11. Simulated and measured output power over various V.

The CPU time required for one singular dc operating
point was about 600 s on a MicroVax 2000 if k=4 is
chosen.

VI. CoNCLUSION

A novel method combining time-domain and fre-
quency-domain approaches to determine the periodic
steady state of oscillators has been presented. The method
was derived in a general manner and then tested in cases
which are difficult to handle either for pure time or
frequency-domain simulators. Results on oscillators simi-
lar to the second example indicate that today harmonic
balance implementations are still faster by a factor of
between 2 and 10. However, the method described here
implies no bandwidth limitation within the nonlinear sub-
network, since the bandwidth there is determined by the
step size of the integrator, which is independent of the
number of harmonics assumed at the ports. As impedance
levels at higher harmonics are not reliable in common
models for passive circuits, a restriction to a small number
of harmonics in the linear subnetwork is reasonable.
However, owing to fast processes in the semiconductor, a
bandwidth restriction within the nonlinear subnetwork
has a more serious effect on the results, since it excludes
contributions of up-conversion and consequent down-con-
version. Therefore a pure frequency-domain method may
require the inclusion of higher harmonics and increased
numerical effort to reach the same accuracy. Further-
more, the error discussion of the above model resulted in
a definite improvement over pure frequency-domain
methods, as a good error estimate for the Fourier series
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truncation is available at almost no cost. So there is no
need for variation of the number of harmonics to gain
confidence in the validity of the solution. While time-
domain simulations are compulsory when no assumptions
on the qualitative behavior of the oscillation can be made
and while harmonic balance may be faster in well-
behaved problems, the method presented here is ex-
pected to find its place in applications where fast pro-
cesses in the active devices have to be modeled and where
reliable error control is required.
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