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Abstract —This paper presents a new method for the computa-
tion of the steady state of nonlinear oscillators including dis-

tributed elements which exploits advantages of both time-

domaiin and frequency-domain simulation. The oscillator net-

work is divided into a linear subnetwork described by a hybrid
matrix in the frequency domain and a nonlinear subnetwork

represented by a set of first-order nonlinear differential equa-

tions solved in the time-domain. The periodic steady state of the

oscillator is shown to be equivalent to the solution of a boundary
value problem, where the boundary conditions are given at a set
of points along the time axis. For the solution of the boundary

value problem the multiple shooting algorithm is applied, which
may be modified in a very effective way owing to the special

structure of the boundary value problem. It will be shown that

the Ibandwidth in the nonlinear subnetwork can be, chosen

arbitrarily high regardless of the number of harmonics at the

ports connecting the subnetworks. An error estimate for the

neglected harmonics at the ports is derived, which does not
require additional numerical effort. In order to demonstrate the
feasibility of the method and to discuss the error mechanisms it

is applied to two examples: a Clapp oscillator including a
piecmvise-linear characteristic and an integrated GaAs MES-

FET oscillator at 10.7 GHz.

I. INTRODUCTION

NI

ONOLITHIC integration of microwave circuits

makes the accurate prediction of the behavior of

oscillators an increasingly important task in modern CAD

techniques. From a linear simulation such important

characteristics of oscillators as frequency and output

power can only be estimated, because certain dominant

effects, such as the operating point shift and limitation

mechanisms, are neglected. The use of traditional time-

domain techniques as implemented, for example, in

SPI~OE is the most general, but also the least advanta-

geous, way to compute the steady state of an oscillator [1],

[2]. Here no assumption on the periodicity of the solution

is made and a quasi-periodic or chaotic solution may be

simulated as well as a periodic one. Owing to the flexibil-

ity of modern integration algorithms the time-domain
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simulation may be done very effectively [1]. Nevertheless

this simple method requires a high computational effort

because of the unfavorable description of distributed ele-

ments and the stiffness of the oscillator network, i.e., the

large difference between the time constants inherent in a

typical oscillator circuit.

These problems can be avoided if a periodic solution is

assumed, as is done in numerous algorithms. An excellent

overview of the literature can be found in [4]. The most

popular method is the harmonic balance algorithm, where

the currents and voltages are described by Fourier series

with a finite number of elements. Then the inner states of

distributed elements can be eliminated and the differen-

tial equation describing the oscillator network is trans-

formed into a complex algebraic equation, which is solved

by using an algorithm of the Newton-Raphson type or by”

minimizing an objective function. Problems may arise with

the harmonic balance method if the oscillator includes

strong nonlinearities generating a large number of har-

monics which have to be taken into consideration to

achieve the required accuracy.

Another algorithm which underlies the presented algo-

rithm is the shooting method [2], [3]. Here the state vector

describing the oscillator network is varied until after cme

period of oscillation the state is the same. In the case of

high-Q circuits this algorithm runs into severe conver-

gence problems. Additionally the method still requires a

discrete approximation of distributed elements and so is

very impracticable in microwave circuits.

In this paper a new algorithm is presented which cc~m-

bines the advantages of both time-domain simulation and

frequency-domain simulation. In Section II the network

representation is described, which is based in a division of

the network into a linear and a nonlinear subnetwc)rk.

The linear network part is represented by a hybrid matrix

and can be computed with the methods of traditional

linear network analysis. In Section III it is shown that the

steady state of the oscillator network is equivalent to the

solution of a nonlinear boundary value problem where the

differential equation is given by the nonautonomous set
of first-order differential equations and the boundary

conditions are given at a set of sampling points ;and

couple the two network subsets. The multiple shooting

algorithm [5], [61, which shows a much wider basis of
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Fig. 1. Linear and nonlinear parts of oscillator network,
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Fig. 2, Separation of the linear and nonlinear network parts.

convergence than the single shooting one, is applied to

this’ boundary value problem in Section IV. Since the

bounda~ conditions are no longer given at two points, as

in the original multiple shooting algorithm, it must be

modified appropriately. The special structure of the dif-

ferential equations and boundary conditions is exploited

to accelerate the numerical calculations. To demonstrate

the practical use of the algorithm as a whole and to

discuss its error mechanisms, it is applied to two examples

in Section V. The first, a simple oscillator network, shows

the advantages of the method in the analysis of strong

nonlinearities. In a second example the steady state of an

oscillator at a frequency of 10.7 GHz is computed.

II. NETWORK REPRESENTATION

The description of the network is based on a division

into two subsets as shown in Fig. 1. A nonlinear subnet-

work contains all nonlinearities of the oscillator network

and some linear elements embedding the nonlinearities.
These linear embedding elements show in many cases a

low-pass structure owing to parasitic elements such as

bond wire inductance, package capacitance, and loss re-

sistances. They may be used to reduce the numerical

effort drastically, as demonstrated later. In the other

subnetwork all linear network elements which are appro-

priately described in the frequency domain are collected,

such as distributed elements. The two network parts of

the oscillator are connected by m ports. In a subsequent

step the linear and the nonlinear part of the network are

separated from each other as shown in Fig. 2. At each

port, either the voltage or the current is replaced by an

equivalent source, These sources are collected in the

vector 1.

First we will present a description of the nonlinear

subnetwork. Based on the methods of state analysis this

subnetwork is described by a set of nonlinear first-order

differential equations:

:X=A(Z) X+B(Z) W(Z)+ C(Z)WZ) +D(z)l,

XERn, lERm (1)

where x is the vector of the state variables and z is the

vector of the variables controlling the nonlinearities. Non-

linear resistors and nonlinear conductance have been

replaced by controlled voltage and current sources and

are assembled together with all other sources by the

vector w = [vO, iol~. Since we have so far imposed no
restriction on the network allowing, for example, nonlin-

ear capacitors and inductors, the vector w and the matri-

ces A, B, C, and ~ given by the elements and the

topology of the nonlinear network depend on z, which

controls the nonlinearities. A simple example will demon-

strate this: the current through a diode may be estimated

by i~ = (1 – e“ju’), where u is the voltage on the diode.

In this case the controlling quantity is given by z = u.

Equation (l), which is implicit in general since z depends

on x and ~, will degenerate to an explicit set of differen-

tial equations if two restrictions are imposed: First, we

exclude cases where the controlling z is a function of x

and i and assume that the nonlinearities are controlled

by the state variables only. Second, we assurqe that no
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loop exists including a controlled voltage source and that network described completely in the time domain. In oIur

the loops contain only capacitors and voltage sources. By method this is equivalent to the case where the nonlinear

analcgy we exclude the dual case, where a controlled subnetwork contains the whole oscillator network and the

current source is connected to a node which is connected number of ports is zero. Then we obtain from (2)

only to current sources and inductors,

Wkh these restrictions, the matrix C degenerates to O

and then we obtain from (1) ;X=A(X)X+B(X)W(X). (5)

:X=A(X)X+B(X)W(X)+D(X)l. (2) This set of differential equations is autonomous and rep-

resents the entire oscillator network. In the periodic state

Now the set of equations is in a form to be integrated
of an oscillator the state of the system must obviously

with a standard algorithm. The state vector gives a
repeat itself after each period of oscillation. Since the

single-valued representation of the nonlinear network.
state of the system is uniquely defined by the state vector

Therefore all network currents and network voltages can
it is necessary and sufficient that

,-
be clerived from x. The vector c containing the dual

variables to the port source vector 1 is given by x(t) =x(t+ To) (6)

c= Fx+Gw+H1. (3)

The matrices F, G, and H are derived in a way similar to

that for the matrices A, B, c, and D from topology and

elements of the network, Equations (2) and (3) provide a

complete description of the nonlinear subnetwork, A

computer algorithm for generating these equations can be

found in [1].

At the linear subnetwork the port variables 1 and c’ are

connected by their Fourier transforms in the frequency

domain:

F’((L))L(OJ) = C’(O), J“(o) G Cmxm (4)

where Jlo) is the hybrid matrix of the linear subnetwork.

It is assumed that ~(~) is given by standard network

analysis or by a field-theory-based computation.

Now a favorable aspect of the network separation be-

comes apparent. In a pure time-domain formulation,

high-Q circuits have slow time constants, leading to long

transients and small variations of the state variables after

one period of oscillation. This requires excessive numeri-

cal effort in integration and causes a nearly singular

Jacc)bian in a shooting method. This will entail excessive

numerical effort if the steady state is obtained by integra-

tion, and requires extremely high integrator precision if a

shooting method is used. If the feedback structure is

interrupted by the netsvork separation, the slow time

constants of the resonator will have no influence on the

time-domain integration in the nonlinear subnetwork,

while a frequency-domain approach for the linear subnet-

work involves the most appropriate basis function for

high-Q circuits.

III. THE STEADY STATE AS THE SOLUTION TO A

BOUNDARY VALUE PROBLEM

In this section we deduce a boundary value problem

whose solution is equal to the steady state of the oscilla-

tor. The best way to do this is to start from an oscillator

be fulfilled, where T’O is the period of oscillation and t an

arbitrary initial time. Equations (5) and (6) define a

two-point boundary value problem which is unsolvable for

two reasons: first of all we do not know TO a priori, and

second we see that for any solution X$ti) there exists an

infinity of solutions X,(tl + s), s = R. By a simple transfor-

mation this boundary value problem may be transformed

into a solvable one. Therefore the time interval t G [ ti, ti

+ TO] is transformed to 7 = [0,1] introducing TO as a new

“synthetic” state variable TO via

:X=[A(X)X +B(X)W(X)]TO

dTO t
—.

d~
o r=—.

To
(7)

Notice, that we have now n + 1 differential equations amd

therefore need one additional boundary condition, which

is given by, for example,

d
~XV(T=O) =0 or XV(7=O) =0. (8)

This boundary condition should fix the phase of the limit

cycle but must be applied cautiously as to ensure that XU

has no local maxima or minima lying close together in the

first case or not too large a dc offset in the second case.

We have derived now a boundary value problem whose

solution is the steady state of a lumped oscillator network

for the special case of the network description in the
previous section. Treating the general case according to

the network representation in the section above, the

condition x(7 = O)= X(T = 1) k necessary, but no ‘lon~ger

sufficient. In addition to this condition the port volta~ges

and currents of c(T) and c’(~) must coincide. By analogy

to the pure time-domain method shown above, we trans-
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form (2) and obtain

dTO
:=( Ax+ Bw+D1)TO ~=0 ,=; . (9)

o

Since we assumed a periodic oscillation,

may be described by the Fourier series

+~

the vector l(~)

From (4) we obtain

+CO

c’(T) = ~ VV(L:+jLj)eJ2=”’ (11)
V=—m

where Vu is the hybrid matrix of the linear multiport at

the vth harmonic of the frequency ~.= 1/ To. Now the

interaction between the subnetworks is limited to fre-

quencies below (k + l)~~. The Fourier series are trun-

cated above their k th elements. Note that this does not

impose a bandwidth restriction within the nonlinear sub-

network which is determined by the step size of the

integrator. Then we obtain a set of n + (2k + l)WZ differ-

ential equations:

:X=[A(X)X+B(X)W(X)+D(T)l(T)]TO

;To=o

;L=O (12)

where we added the Fourier coefficients L = [Lo, L;,
L;,. ... L~ IT as state variables. To fix the phase of the

limit cycle we set the first element of L; to zero and omit

it in the vector L. Contrary to (8), this condition implies

no loss of generality. For the n +(2 k + l)m differential

equations given in (12) the same number of boundary

conditions is needed. The first n conditions result from

the condition of periodicity for the state variables:

x(7=o)=x(’r= l). (13)

To obtain the resting (2k + l)m conditions the following

considerations are made: we have assumed periodic and

bandwidth-limited port voltages and currents l(t) and

c’(t). Now we assume, that c(t) is limited to k harmonics,

too. Then it is necessary and sufficient for c’(t) and c(t)

to coincide at 2k + 1 sampling points. This leads to (2k +
l)nz conditions:

v—l
C(’TU)-C’(TU) =0, —

‘V=2k+l’
v=l,2, ”””,2k+l.

(14)

With (12) as differential equation and (13) and (14) as

boundary conditions, we now have derived an n + (2k +
l)m-dimensional nonlinear boundary value problem. No-

tice that the boundary conditions are no longer given only

at T = O and T = 1, as in the pure time-domain boundary

value problem from (6), (7), and (8), but rather at 2 k + 2

points with ~ =(v –1)/(2k +1), v = 1,” “ “,2k +2. This

makes the standard boundary value problem solver inap-

plicable.

IV. NUMERICAL SOLUTION OF BOUNDARY VALUE

PIXOBLEM

A. The Nonlinear Vector Valued Shooting Function

Having shown that the solution of the bounda~ value

problem given by (12), (13), and (14) is equal to the steady

state of the oscillator, we apply and modify the multiple

shooting algorithm [5], [6], Multiple shooting has a wider

region of convergence; i,e., the method works with a

worse initial guess than single shooting [6]. From now on

the extended state vector, containing x, TO, and L, is
denoted as y = [x, To, L]T, y = Rn+(zk+ l)m. From (13) and

(14) we define a nonlinear boundary function

‘(y(’=O)y(’=*)”””y(T=l))

[

x(1) – x(o)

c’(o) – c(o)

“(*l’-c(A)
=6+(*)

1:

[+%-b%)

(15)

Our task will be to find a trajectory of y fulfilling R = O.
We divide the interval [0,1] into 2k + 1 equal sections as

done previously in (14) and choose at each of these

sections a starting point c)f y: Y(T = K /2k + 1) =:s. as

shown in Fig. 3. The solution of the initial value problem

at T = (K + 1)/(2k +1) with differential equation (12) and

starting value s. will be denoted as

+=a=eK+@J(16)

We have to find now a set of starting vectors Sl, Sz, ” “ “,

sz~+ ~ so that the discontinuities from e<+ ~(s~) to s.+ ~

vanish (see Fig. 3) as well as the boundary function R:

R(sl, sz,. ” “,s2,t+l,e2k+2( s2k+J)) =0. (17)
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Fig. 3, The subdivision of the limit cycle into 2k + 1 sections portrayed
as a two-dimensional projection into the plane .xa, Xb from state space.

Notice that in (17) we have not defined a starting vector

at ~:= 1. The value at this point is given by the result of

the initial value problem ezk + z (sZk + 1). Finding a set of

starting points with the required properties is equal to

find the zeros of the vector ;alued function

u(s) =

e2(s1) – S2

e3(s2) –s3

‘2k+2(s2k+l)-sl

c’(o) – c(o)

“(*)-C(*)
+Z%)-+A)

[C’(ZW=I)

(18)

u*(z) =

ejk+2(sjk+l) -‘~

c’(o) – c(o)

+Ai]-%i)
da-k%)

,C’(a-c(a

(1’9)

with s*=[s~, s~, -” “, s~k+ ~]=, where s: denotes the stamt-

ing point s: = x(7 = K \(2k + 1)). This quantity e* de-

scribes the first n variables of y containing the state

with~ s =[sI, sZ, . “ “, s’2k+ ~lT.The special structure of the

set of differential equations (12) enables us to simplify the

vector valued funct;on. With the’ introduction of the (2k

+ I)m synthetic state variables we added trivial differen-

tial equations to the original system in (12). The solution

of these trivial differential equations is isolated from the
state vector and is easily seen to be constant in one

subinterval [K ~(2k +1), (K + 1)/(2k +1)1. sincewe desire
a trajectory that is continuous at the boundaries of two

sub intervals, these additional state variables must be con-

stant in the whole time interval T G [0, 1]. Therefore it is

sufficient for them to be defined once. This leads to the

variables and z is defined by z = [s*, TO, L].

Since we will need the Jacobian MJ* /dz when trying to

find the zeros of U*, as demonstrated next, we will first

discuss its special structure and show how it can be

efficiently computed. In general, most of the CPU time

required by a root-finding algorithm is spent in the evalu-

ation of the Jacobian, which is not given explicitly in most

cases and has to be estimated via numerical differentia-

tion demanding many function evaluations. Because of

the special structure of U* we can reduce the numerical

effort significantly. Regarding the first row of U* we

notice that it depends only on s;, S2,* TO, and L. Simi-

larly, the second row depends only cm s;, s:, TO, and L.

Note that the partial derivative of the vector c’(K) – c(K)

with regard to S$ is nonzero only for K = v. we obtain,

for the whole Jacobian,

NJ*

‘=x=

(20)
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with the matrices

Q: E: Rm(2k+1)xn

In (20) only the matrices $;, +: and the first column of

q: must be computed via numerical differentiation. The

matrices q; and q: can be calculated directly by differen-

tiating (15) with respect to y:

‘[c’(=)-c[=)]
dL

The sparse matrix structure of the Jacobian allows effi-

cient memory management and the use of sparse matrix

techniques.

At this point the probletns arising in a simple t~me-

domain analysis of a very weakly damped system become

apparent. The system is represented according to the
network description in (2) and (3) by a O-pch-t: rn = O. The

matrices $:, q;, and 9: vanish. For the weakly damped
system ~~ comes close to the identity matrix +& = 1 and

J is ill-conditioned or singular. The root-finding algorithm

described in the next subsection, however, assumes a

nonsingular Jacobian.

B. The Modfied Newton – Raphson Algorithm

To find the zeros of U*(z) we apply the modified

Newton–Raphson algorithm. Since this is a well-known

standard algorithm, the discussion here will focus on

certain details of norming and step size control.

With the Newton–Raphson algorithm the nonlinear

function first is linearized, with terms of higher order

neglected. From this linearized function the zeros can be

found by

U*(.Z]+JAZ=O. (23)

Solving the linear problem

JAz=-iU*(z) (24)

leads to Az. The Newton–Raphson algorithm is an itera-

tive process where at every iteration step the estimation

of z is corrected via

Z(t+l) = 2(1) + AZ(l) (25)

where we denote z(z) as the value of z at the ith iteration

step. If the first estimation of z(o) is too far from the

solution the algorithm will not converge to the solution.

In order to enlarge the basin of convergence we introduce

a relaxation factor A(’) and obtain
Z(Z+l) = Z(Z) + A@&(L),

o</i(i~<l (26)

which is called the damped Newton algorithm. The litera-

ture presents a number of methods for the choice of A(’).

To avoid numerical problems with an ill-conditioned Ja-

cobian we introduce a weighting matrix W([) for the i th

iteration step:

W(i) = diag [w~(’),w~(’),. . . ,WI~~\l,W~(’),W}L),. “ “ ,W~(~)+l]

(27)

with

X(Z)= diagWI

[
,(2;+~,*k::l(s*q2+(s*@’J)2‘1(28)

u

(29)
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where w~(~),c“ “, w~f~ 1 averages the state variables and
Wl(i) the Fourier coefficients.

We weight (20) and obtain from (24)

i= Jw ~=w–lz

.Z=– U*(Z). (30)

This transformation improves the condition number of

the linear equation system and avoids numerical sensitiv-

ity when, for example, one state variable is in the range of

10 V and another in the range of 1 wA.

The relaxation factor A(i) is chosen according to [7]:

(1@ = if p(i) >0.7

~(i) if ~(i) <0.7

with

(i) =
IIA2(’)112

P n@) - Afi(i)[12

(31)

(32)

where Ai7 i comes from a “simplified Newton step”:

~(i-OAfi(O = _ U(O(2) (33)

II”112clenoting the Euclidean norm of a vector.
(~) and T~i) evaluate the successTwo level functions T1

of an iteration step. T~i) judges the relative error of U(’):

Tli)= llw(i)-’w~(i))Il. (34)

The level function Tf) is given by the Euclidean norm of

the correction A,Z(i):

T~O = l\A#Ol\~o (35)

An iteration step will be accepted if at least one of these

level functions has decreased. Otherwise the step has

failecl; the step size A(i) is decreased. The algorithm is

terminated if both Tfi) and Tji) are less than a chosen

error E:

.s> max (T~i), T~i)). (36)

V. EXAMPLES AND ERROR MECHANISMS

In order to show the feasibility of the method two

examples were chosen, the first representing a simple

Claplp oscillator model including a piecewise-linear char-

acteristic. It illustrates the formalism of network descrip-

tion and shows the advantage of the algorithm when

analyzing oscillators with strong nonlinearities. With this

simple example the error mechanisms are discussed. In a

second example the algorithm is applied to a hybrid

integrated GaAs oscillator with a MESFET as’ the active

element in order to demonstrate the feasibility of the

method to real microwave oscillators.

A. Clapp Oscillator

The equivalent circuit diagram of the first oscillator

example is depicted in Fig. 4, including two nonlinearities:

a nonlinear input resistance, i.(( t) = fl( u.), and a nonlin-

ear controlled current source, i~(t ) = ~2( u.). As shown in

1397
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Fig. 4. Linear and nonlinear parts of the oscillator network.

Fig. 4 the network is divided into a linear and a nonlinear

subnetwork and the port current is replaced by the cur-

rent source (see Fig. 5). The nonlinear subnetwork is

represented by the equations

–1 1

CeRe
o—

CeRe
0

–R.–R, 1
0

C~R~Rl
o—

CaRa

1 –1

C,eRe
o—

C,eRe
0

1 –1
o—

C,aRa
o—

C,aRa

“[I
v ce
v ca
u cte
v eta

r::,–1 o
0

Ce o

+ [1–1 ‘e
o—

cc ‘q
+ 2 [i,]

1
00
0 0 eta

[1
v cc?

Ud=[o o 1 –1] :::e .

rJCta

(37)

(3I8)
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I I
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R RA

c
. h
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The nonlinearities are chosen as

‘JvJ=A(expi’)
1B1

—— ifu. <—B2
B2

(39)

-,0 L———J
0.0 0.4 0,8 1.2 1.6 2.0

T-+

45

15

–15

–45

H
-75 ~

0,0 0.4 0.8 1.2 1.6 2.0
r+

Fig. 5. Nonlinear subnetwork; the linear subnetwork is replaced with a
current source.

TABLE I
STARTING VALUES FOR THE ITERATION PROCESS

LO=O

Ll=l.10-2+j0

L2=O+j0
L3=O+j0
L4=O+j0
L5=O+j0
TO= 1.10-6

Jol = 0,01

k=5

Level function T,
1

‘1 “o:: 7

~fJ-2

IO-4

10-6

lo-n

~;\1o-1o

~o-lz ~

0123456 78
Iteration step +

Fig. 6. Level function T, during the iteration process.

{iq(ue) = Blue if —B2<vE<B2. (40)

B1
if v. > B2n

( D2

Since we have only inserted a current source at the port,

the hybrid matrix V degenerates to a simple impedance

Z, which is obviously not defined at o = O. Therefore we

introduce U. instead of i. as a state variable and avoid

the problem of the product of the terms 2(o - O) -0

and 1(o a O) ~ cc when matching c’(t) and c(t). The

starting values and parameters for computation were cho-

sen according to Table I. As an integrator for the solution

of the initial-value problems, the Gear algorithm was

applied [8]. The solution was obtained after eight itera-

tion steps. On a Micro Vax 2000 the required CPU time
was about 200 s. Fig. 6 depicts the course of the level

function TI during the iteration process and shows a

decay of about two orders of magnitude per iteration step

near the solution, which is typical for the Newton algo-

rithm.

This simple example shows a great advantage of the

presented method, one which results from the flexibility

of modern integration algorithms. In an integration algo-

rithm such as Gear’s, the evolution of the state variables

over time is discretized and a polynomial is used to

extrapolate to the next discretization point. The order of

the polynom and the step size between the discretization

points may be controlled using error estimates. The time

VC.(T)[V]
20 ~___— th(r)[v]

13 ~

01 I 8~
0.0 0.4 0.8 1.2 1.6 2.0 0.0 0,4 0.8 1.2 1.6 2.0

T-+ T+

Fig. 7. Time plots of ie(7), is(r), Uca(T), and uC,a(7).

plot of iq in Fig. 7 which was generated using three

harmonics at the port shows that the bandwidth within
the nonlinear subnetwork is truly independent of the

bandwidth limitation at the port. With harmonic balance

algorithms the time plots are interpolated by Fourier

series. The order of these series must be chosen a priori

and determines the step size between discretization points

in time; i.e., all variables in the nonlinear subnetwork

underlie the same bandwidth limitation as the port vari-

ables. It can easily be seen from iq and vCa in Fig. 7 that

this is very inefficient in some cases. In our method the

step size of the integration algorithm is independent of

the number of harmonics ;allowed at the ports. This

means that processes within the nonlinear subnetwork, in
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TABLE II

RESULTS OF SIMULATION FOR VARIOUS k

k 1 2 3 4 5 6 7

c RMS 6.09310-2 2.32910-2 1.52710-2 2.85110-3 2.79510-3 8.97010-4 1.04310-4

f [MHz] 1.011184 1.011283 1.011284 1.011275 1.011275 1.011276 1.011270

IL1,OIIV] – 12.24 –11.43 –11.09 –11.04 –11.04 –11.03 – 11.04

lL1,l\[mA] 33.85 30.89 29.83 29.68 29.67 29.67 29.67

lLl,,l[mA] – 1.30710-2 9.05510-3 9.00810-3 8.91510-3 8.89310-3 8.91510-3

lLl,3[[mA] – 3.16910-3 2.17210-3 2.17410-3 2.17210-3 2.17410-3

lL1,41[mAl – — — 9.41410-4 9.38110-4 8.94310-4 9.14910-4

lL@IA] – — — — 1.03110-4 6.24810-5 5.41510-5

lL1,6hnA] – — — 9.82210-5 7.41510-5

lL1,71[mA1 – — — — LO711O-5

which higher harmonics affect lower harmonic contribu-

tions, can be calculated more accurately at the same

number of port harmonics. Furthermore, regarding the

evolution of the state variables over time, an unwanted

oscillatory behavior of the active device itself may easily

be detected while harmonic balance algorithms would

give bad convergence as the only hint. This simple exam-

ple shows the applicability of the algorithm to oscillators

with strongly nonlinear behavior. We are now to discuss

the e:rror mechanisms of the algorithm, which may be

divided into three main effects.
The first results from errors in the solution of the

boundary value problem, especially of the solution of the

zeros of (19). This error can be easily estimated by (36).

The second error is caused by the subdivision of the

entire oscillator network into two subnetworks. With the

replacement of the linear subnetwork by current sources

or voltage sources including k harmonics, the nonlinear

subnetwork is terminated for harmonics of an order

greater k with a short circuit when a voltage source was

inserted and with an open circuit for the insertion of a

current source. At this point another aspect of the re-

placement of the linear subnetvvork with sources becomes

apparent. An accurate result will be achieved if the kind

of source is chosen with respect to the behavior of the

linear subnetwork for o ~ ~. A parallel resonant circuit,

for example, which leads to a short circuit for o ~ O-J

should be replaced with a voltage source.

The third kind of error we will now discuss is caused by

the truncation of the Fourier series and the violation of

the sampling theorem. Recall the derivation of the

boundary value problem. In a first step we replaced the
linear m-port by m sources described by l(~). The as-

sumption that l(~) is limited in bandwidth and may be

described by Fourier series with a finite number of k

harmonics leads to a truncation error. In a second step we

assumed that the port voltages and currents c(~) dual to

l(~) are limited in bandwidth to k harmonics too. Then it

is sufficient for c(r) and c’(r) to coincide at 2k + 1

sampling points owing to the sampling theorem. In reality

this assumption is not justified since harmonics with a

higher order than k may arise in the nonlinear subnet-

work. This leads to a violation of the sampling theorem.

A great advantage of the presented algorithm is that

the error above may be estimated in a very simple way, To

100
tp(T)[mA] for k = 4
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Fig. 8. Time plots of iP(r) and Ud(r) for k = 4 and of d(7) for k = 1
and k = 4. The vertical lines denote the sampling points for the compar-
ison of c(r) and c’(7).

that end we compare the port voltages and currents c(:r)

and c’(~) and define the difference d(~) as

d(T) =c(7)– c’(7). (41)

The solution of the boundary value problem implies that
d(~) becomes zero at the sampling points. The existence

of harmonics of higher order than k and the violation of

the sampling theorem induces a d(~) unequal to zero off

the sampling points. A simple criterion for error is the
root mean square e~~~ of d(r) normalized to c(~) and

c’(~) by

(42)
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Fig. 9. Block circuit diagram of the GaAs MESFET oscillator.
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Fig. 10. Network separation and MESFET model.
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The quantity e~.s may be used to control the error

discussed above. The order of the Fourier series is in-

creased until •~~s is less than a specified tolerance. To

illustrate the mechanisms discussed, the example was

computed with k =1,2, ” co,7, Table II compiles the re-

sults. We see that port voltages and currents are almost

completely determined by the harmonics of order O and 1.

Therefore e~~~ decreases slowly for k ~ 1, This can be

seen in Fig. 8 as well, where the time plots of d(~) and

the sampling points are shown for k = 1 and k =4. We

see that d(~) becomes O at the sampling points.

B. Hybrid GaAs Oscillator

In a second example the algorithm is applied to a

hybrid GaAs oscillator at a frequency of 10.7 GHz. The

block circuit diagram is depicted in Fig. 9. For the active

element, a GaAs MESFET, a model according to [9] and

[10], was chosen. The parameters were extracted by

matching the model to S-parameter and dc measure-

ments. The network separation and the MESFET model

are shown in Fig. 10. The transistor nonlinearities are

given by

with

u,= D,,(1+ p(~,s - Udso)). (49)

As integrator the Gear algorithm was used. The solution

for the operating point VgsO = – 0.5 V and Vd,o = 3.0 V

with eight significant numbers was obtained after eight

iteration steps, The results for this operation point com-

pared with measurements are represented in Table 1[1.

The output power was measured with a Hewlett Packard

HP8569a spectrum analyzer. The steady state of the oscil-

lator was computed as a function of the dc operating

point, i.e., of Vd,O (see Fig. 11). The solution for one

operating point was used here as a starting value for tlhe
neighboring operating point, so the algorithm was always

near the solution. Since we made only small parameter

steps, the algorithm converged within a few iteration

steps. Note that for Vd$O= 1.05 in simulation and for

Vd,O = 1.35 V in measurement, the oscillation vanishes.

For the presented algorithm this means that the vector

valued function (19) possesses no zeros except the trivial

one, which is the stable dc operating point given by

d

Zxs’ =
o L=O. (50)

i,, = (xtO + Alul+ zl,u~ + A,u~)tanh(yu.,) (43)

( 1,
c if vCg$< FCv~gso

r
l–~

VB
cgs=(

,(

v~gs– FCVB
c ~~o 1 +

)

if VCg, > FCVB
2(7JB– FcvB~~

(44)

( 1
c gdO

r

Vcgd if UCgd< FCVB

l–—
VB

cgd = (

,[

‘cgd – ‘CUB
cgd~ 1 +

!

if Vcgd > FCVB
2(vB,– FcVB~~

I
,.(exP(*-l)+Gm#g, if Vg, > 5nuf

ig, = – 1. + G~i~~~ if – v~, +50v~ < Vg,< 5nvT

((

‘gs + ‘br
– I, exp –

)
_ 1 + G~i~vg, if Vg, < – Vb, + 50ut

““[

I(exp(~l~G~invd if ud~ > Snvt

ld~ = – 1. + G~,.v, if – v~v +50v T < v& < 5nv~

((

‘ds + ‘br
– Is exp –

)
– 1 + Gm,nVd, if Vd, < – Vb, +50v~

VT

(45)

(416)

(47)

(48)
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TABLE III

OUTPUT POWER AND FREQUENCY, WITH Pk DENOTING THE POWER

OF THE k th HARMONIC

Measured Simulated

~ 10.689 GHz 10.433 GHz

5.800 dBm 6.45 dBm

P; – 2.5 dBm – 2.143 dBm

Output Power [dBm]: - simulated o measured

‘“’~

–20 -1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t“dsO 4

Fig. 11. Simulated and measured output power over various I&.

The CPU time required for one singular dc operating

point was about 600 s on a MicroVax 2000 if k = 4 is

chosen.

VI. CONCLUSION

A novel method combining time-domain and fre-

quency-domain approaches to determine the periodic

steady state of oscillators has been presented. The method

was derived in a general manner and then tested in cases

which are difficult to handle either for pure time or

frequency-domain simulators. Results on oscillators simi-

lar to the second example indicate that today harmonic

balance implementations are still faster by a factor of

between 2 and 10. However, the method described here

implies no bandwidth limitation within the nonlinear sub-

network, since the bandwidth there is determined by the

step size of the integrator, which is independent of the

number of harmonics assumed at the ports. As impedance

levels at higher harmonics are not reliable in common

mod”els for passive circuits, a restriction to a small number

of harmonics in the linear subnetwork is reasonable.

However, owing to fast processes in the semiconductor, a

bandwidth restriction within the nonlinear subnetwork

has a more serious effect on the results, since it excludes

contributions of up-conversion and consequent down-con-

version. Therefore a pure frequency-domain method may

require the inclusion of higher harmonics and increased

numerical effort to reach the same accuracy. Further-

more, the error discussion of the above model resulted in

a definite improvement over pure frequency-domain

methods, as a good error, estimate for the Fourier series

truncation is available at almost no cost. So there is no

need for variation of the number of harmonics to gain

confidence in the validity of the solution. While time-

domain simulations are compulsory when no assumptions

on the qualitative behavior of the oscillation can be made

and while harmonic balance may be faster in well-

behaved problems, the method presented here is ex-

pected to find its place in applications where fast pro-

cesses in the active devices have to be modeled and where

reliable error control is required.
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